翻訳と辞書
Words near each other
・ Rouben Ter-Arutunian
・ Rouben V. Ambartzumian
・ Rouben Vesmadian
・ Roubia
・ Roubidoux Creek
・ Roubidoux Formation
・ Roubidoux Spring
・ Roubini Global Economics
・ Roubion
・ Roublot
・ Roucamps
・ Rouch
・ Rouch Point
・ Rouchel Brook
・ Rouchovany
Rouché's theorem
・ Rouché–Capelli theorem
・ Roucourt
・ Roucourt, Nord
・ Roucy
・ Roud (disambiguation)
・ Roud Folk Song Index
・ Roud, Isle of Wight
・ Roudebush Farm
・ Roudehen
・ Roudham
・ Roudham and Larling
・ Roudham Junction railway station
・ Roudhan Al-Roudhan
・ Roudkunda


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Rouché's theorem : ウィキペディア英語版
Rouché's theorem

Rouché's theorem, named after , states that if the complex-valued functions ''f'' and ''g'' are holomorphic inside and on some closed contour ''K'', with |''g''(''z'')| < |''f''(''z'')| on ''K'', then ''f'' and ''f'' + ''g'' have the same number of zeros inside ''K'', where each zero is counted as many times as its multiplicity. This theorem assumes that the contour ''K'' is simple, that is, without self-intersections. Rouché's theorem is an easy consequence of a stronger symmetric Rouché's theorem described below.
== Symmetric version ==

Theodor Estermann (1902–1991) proved in his book ''Complex Numbers and Functions'' the following statement: Let K\subset G be a bounded region with continuous boundary \partial K. Two holomorphic functions f,\,g\in\mathcal H(G) have the same number of roots (counting multiplicity) in K, if the strict inequality
:|f(z)-g(z)|<|f(z)|+|g(z)| \qquad \left(z\in \partial K\right)
holds on the boundary \partial K.
The original Rouché's theorem then follows by setting f(z):=f(z)+g(z) and g(z):=f(z).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Rouché's theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.